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Theory of Reverse Osmosis and Some Other 
Membrane Permeation Operations 

CHENG H. LEE, Corporate Research Department, Monsanto Company, 
St. Louis, Missouri 63166 

Synopsis 
The general permeation equations for various transport operations using membranes 

were correlated according to the solution-diffusion theory. It was shown that for some 
important conditions, the permeation properties for reverse osmosis can be generated 
from those of pervaporation. The use of reverse osmosis with pressure smaller than 
2000 psi is calculated to be of limited use for the purification of water with small amounts 
of organic compounds. 

INTRODUCTION 

Molecular transport process may be classified into two types: mediated 
or nonmediated processes.' The former process needs a third component, 
or carrier, to  mediate the transport. This process in general occurs in the 
biologic membrane in which enzymes or other carriers mediate the trans- 
port. The specific interactions between the substrate and carrier consti- 
tute this transport process. For the nonmediated process, the permeation 
is due to the existing chemical potential gradient across the membrane for 
each component. The gradient may be the concentrat,ion gradient, pres- 
sure gradient, field gradient, etc. Thus, reverse osmosis, dialysis, pervapo- 
ration, etc., are nonmediated transport processes. Many theories, such as 
the solution-diffusion theory, irreversible thermodynamics, or pore model, 
were proposed to describe this type of permeation. However, no overall 
theoretical correlation of the permeation equations among all the non- 
mediated transport processes, such as those between pervaporation and 
reverse osmosis, has been investigated. It is the purpose of this paper to 
attempt such a correlation for a mixture of components. 

Paul et a1.3-4J have tried to correlate the permeation fluxes between the 
pervaporation and reverse osmosis for a single component through the 
swollen polymer membranes by using the solution-diffusion theory. The 
basic assumption in those calculations was that the membrane pressure is 
the same throughout the membrane. In other words, the driving force for 
reverse osmosis is due to  the concentration gradient which is the result of 
decreased swelling a t  the downstream surface of the membrane. 

We will use the solution-diffusion theory to generalize the permeation 
equation for all the nonmediated transport processes. Under certain 
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conditions and assumptions, the permeation properties, i.e., the separation 
factor and the total permeation rates, for reverse osmosis can be generated 
from those of pervaporation. A simple calculation will indicate the order of 
magnitude pressure needed in order to  purify water with small amounts of 
organic compounds using reverse osmosis. 

SOLUTION DIFFUSION THEORY 

According to  the solution-diffusion theory12 each component of the per- 
meation molecules dissolves in the membrane in accordance with an equi- 
librium distribution law and diffuses through the membrane in response to  
the concentration gradient. Thus, the flux J t  for the i in the absence of 
an  electric field is given by a relationship of the type 

and 
P ( X )  

p t ( x )  = p, + RT In a , ( x >  + S, P ~ P  - J T ( x )  S ~ T  (2) 
T d  

where J , ( X )  = the flux rate for component i through the membrane at the 
position X in the membrane; D t ( X )  = selfdiffusion coefficient for com- 
ponent i a t  the position X in the membrane; C , ( X )  = the concentration of 
component i a t  the position X in the membrane; p t ( X )  = the chemical 
potential of component i a t  the position X in the membrane; pi, = the 
chemical potential of component i at the reference state; a&Y) = the ac- 
tivity of component i at the position X in the membrane; f',(X) = the 
partial molar volume of component i a t  the position X in the membrane; 
P I X )  = the pressure a t  the position X in the membrane, and P,', Tret = 
reference pressure and temperature. 

In  the 
case of a flat membrane, the flux rate J ,  a t  steady state in the case of one 
dimension isothermal permeation will become 

The above equations apply to  any position in the membrane. 

Thus, the permeation rate will depend on the diffusion constant, the 
concentration, the activity gradient, and the pressure gradient in the mem- 
brane. 

CONCENTRATION GRADIENT 
The concentration gradient profile in the membrane may be obtained 

Fick's law of diffusion through the solution of Fick's diffusion equation. 
for a stationary coordinate system is6 

V l  = Wl(V1 + 7,) - PDVWl (4) 
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where 1, r refers to the penetrant and membrane; v1 = flux in mass units for 
penetrant; 7, = flux in mass units for membrane; W1 = weight fraction 
for penetrant; p1 = density of penetrant; and D = mutual diffusion co- 
efficient for penetrant and membrane (the relation between this D and the 
Df, selfdiffusion coefficient, in eq. (1) can be referred to  Crank’**). 

There- 
fore, 

If the membrane r is in a stationary state, then q, is equal to zero. 

v w1. 
PlD 

1 - w1 
71 = ~ (5) 

If the diffusion coefficient is independent of concentration, the concentration 
profile becomes3 

where the coordinate of the membrane is shown in Figure 1. 

membrane, eq. (5) can be approximated to  be 
If the weight fraction of the penetrant is much smaller than that of the 

71 = - plDVW1. (7) 

At the steady state, v1 is constant. If the diffusion constant is indepen- 
dent of concentration, the concentration profile in this case becomes linear. 
In  other words, i t  is given by eq. (8): 

(8) 

where Cf(X) is the concentration of component i a t  the membrane X posi- 
tion; and Ci(Z1) and C,(&) are, respectively, the concentration of component 

-1 1 
C , ( X )  = - [Ct(ld - C,(&)IX + r [Ci(ll)~Z - Cl(k)hl I 
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The schematic of the permeation through a membrane. 
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i a t  the membrane boundary of upstream and downstream. 
of the membrane is 2. 

The thickness 

MEMBRANE BOUNDARY CONCENTRATION 
The concentration of penetrant a t  the boundary of the membrane may be 

calculated from thermodynamic principles. Assume that the membrane 
was in contact with a system, either liquid or gas, the chemical potential a t  
the boundary of the membrane, pilm(FfF), and that in the adjacent phase 
solution, pfIs(pit), must be equal. Therefore 

Pi: = Pflm Pfl' = Pi," (9) 
where 1 and 2 refer to  the upstream and downstream, respectively. 

Application of these conditions to  eq. (2) gives the following relationships 
between the activities in the solution, aila(ai,"), and that a t  the boundary of 
the membrane, afIm(aiF) (Appendix I) : 

at? = at: exp[- Pt(Plm - PIa))/RT] 

at? = ail' exp[- Pi(Pzm - Pz'))/RT] 
(10) 

(11) 

where Plm(Pzm) and Pla(Pz*) are, respectively, the pressure a t  membrane 
boundary and adjacent phase solution. 

If the membrane pressures was assumed to  be constant and equal to  that 
in the upstream phase solution, which is larger than that  in the downstream 
phase solution, one may rewrite eqs. (10) and (11) to  be 

a{," = ar,' (12) 

(13) a{," = ail  exp[- Pi(Pl* - P d ) / R T ] .  
As the activities are equal to  the product of the concentration and the 

activity coefficient, the membrane boundary concentration for any com- 
ponent i, Ci,"(Ci,"), may be correlated with the adjacent phase solution 
concentration, Cira(Ci,d) : 

Y i *  

Yi? 
Ct," = Ci," exp[- Pi(P,t - P2*))/RT] 

where yilm(yi,") and yiIs(yi,") are the activity coefficients for the component 
i a t  the membrane boundary and adjacent phase solution. 

If one defines the solubility constant Ki ,  (K, )  as the ratio of activity 
coefficient a t  the membrane boundary and adjacent phase solution, then 

Ci," = Ki, Ci,' (16) 
(17) Ci," = KilCf: exp[- P ~ P I '  - Pza))/RT1 

where 
Y iII Ti a 

Yi," Ti," 
Ki ,  = - and K ,  f -  - 
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PERMEATION EQUATION 

Combining eqs. (3), (8), (16), and (17) and assuming the membrane 
pressure to be constant, one can derive the following general permeation 
equation for all the nonmediated transport processes : 

Di 
1 J t  = - (K,,CiIs - Ki2Ct: exp[- Pi(P18 - P2'))/RT]) (19) 

or 

or 

where 

where Pi is called the permeability constant for the component i in the 
membrane. If the activity coefficient of the penetrant in the membrane is 
constant, eq. (22) can be rewritten to  be 

In this case, ai becomes independent of the membrane properties. Be- 
cause it depends only on the ratio of the activity coefficient of downstream 
and upstream phase solution, at may be called the partition coefficient. 

Equations (19) or (20) are only valid under the following conditions which 
are true in most cases: (1) Membrane pressure is constant and equal to  
that in upstream phase solution. (2) The diffusion constant, activity 
coefficient, and partial molar volume for all penetrants are independent of 
the concentration. (3) The concentration of each penetrant in the mem- 
brane is very small so that eq. (7) is valid. (4) The partial molar volume 
of penetrant, i, in the membrane is equal to  that in the upstream phase 
solution. 

Based on eqs. (19), (20), and (21), we will discuss the permeation equation 
for each individual permeation process, such as pervaporation, dialysis, 
reverse osmosis. 

Pervaporation 

If the upstream phase is liquid and the downstream phase is a gas or 
vapor, the permeation process is called pervaporation. In  other words, the 
transport process is permeation through the membrane and evaporation 
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from the membrane. 
vaporation can be given by 

From eq. (21), the permeation equation for per- 

since 
y i , V i :  = Pi.,' and yi: = Pf:  (25) 

where Pt,l and Pi t  are the partial pressure for component i a t  the upstream 
and downstream phase. Equation (25) was obtained by assuming the 
pressure equal to  the fugacity or activity. 

In  most cases eq. (24) may be approximated to be 

Since 
PI' = 1 atm, P28 = 0, V f  = 20 cmS/mole 

RT = 25 )( 1010 erg @'la - P2') pi = 2 X lo7 erg, 
so that  

exp [-(PIa - Pz')Vi/RT] = 1.0. 

Considering two components ( i , J )  for the penetrant system, the separa- 
tion factor SFJi  was defined as follows: 

Hence, the separation factor for the pervaporation may be obtained from 
eqs. (26) and (27): 

(28) 

If both Pf," and PJ,t are close to  zero, eqs. (26) and (28) may be simplified to  

Therefore, the separation factor for any two penetrants for the per- 
vaporation through the membrane is just the ratio of the permeability 
constant of each penetrant in the membrane when the downstream pressure 
is close to  zero. 

Liquid/Liquid Dialysis 

In  the case of liquid/liquid dialysis, the pressure in both phases is almost 
equal. Therefore, eq. (21) becomes 
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where ail as mentioned before, is the partition coefficient of component i 
between the downstream phase and the upstream phase. 

Similarly, one may obtain the separation factor SFj i  for the two-pene- 
trant system from eqs. (27) and (30): 

(31) 
Pi 

Gas Permeation 

Since both phases are gaseous in the case of gas/gas permeation, eqs. (18) 
and (19) cannot apply in this case (see Appendix I). The permeation equa- 
tions, however, can be obtained similarly. If the ideal gas and constant 
membrane pressure are assumed, this permeation equation may be obtained 
from eqs. (3), (8), and (9): 

where 

or 

where Pi = DiKirn,. It is important t o  realize the activity coefficient in eq. 
(32) should be corrected to  pressure of standard state (1 atm) from the 
membrane pressure. Therefore, the permeation rate depends only on the 
difference between each penetrant partial pressure in both phases. The 
separation factor in this case becomes 

Reverse Osmosis 
Let us consider two components subject to  reverse osmosis operation. 

Let J be solute whose molar concentration is very small, and i be solvent 
whose molar concentration is approximately one. The partition coefficient 
for both solvent and solute, ai and aJ,  are about equal to  one in this case. 
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Therefore, from eq. (21), the permeation flux for both solute and solvent 
may be given by 

Jr = - { Cfl. - Ci: exp[- 9, (PI' - P z 8 ) / R T ] )  (35) 

(36) 

Pi 
1 

PJ J j  = - { CJ: - Cj: exp[- Vj(P1' - P, ' ) /RT]) .  
1 

Equation (35) can be arranged to be 

(37) 
Pi 
1 

Jr = - Ci,8 {l -exp[- Vf(P1' - Pz' - n ) / R T ] ]  

where n is called osmotic pressure and is given by 

Thus, the total permeation flux Jtotal and separation factor SFJifor 
reverse osmosis can be obtained from eqs. (36) and (37) : 

Jtot.1 = J i  + J J  a J i  

PI 
1 = - Ci," { 1 - exp[- Vf(P1' - P2' - I I ) /RT] ]  (39) 

P f  { 1 - exp[- Vf(P18 - Pzs - I I ) /RT] )  
and 

(40) SFj' = 

exp[- pJ(P1' - P ~ ~ ) / R T I }  

At steady state for reverse osmosis, the following relationship must hold: 

The above equation is valid because the molar concentration of solvent in 

Combining eqs. (41) and (40), one can obtain the separation factor for 
both streams is approximately equal to  one. 

reverse osmosis, and it is given by 

SFj' = exp[- VJ(P1' - Pz')/RT] 
Pi + - 11 - exp[- Vf(Pls  - Pzs - n ) / R T ] ) .  (42) 

It is important to realize that all the derivations of the permeation equa- 
tions for reverse osmosis assume the membrane favoring the permeation of 
the solvent, which is the purpose of using reverse osmosis for separations. 
Equation (39) and (42) are general permeation equations for reverse osmo- 
sis. 

In summary, the permeation equations for all the nonmediated transport 
processes are shown in Table I. 

PJ 
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EFFECTS OF PRESSURE ON REVERSE OSMOSIS 

Equations (39) and (42) show the permeation rate and separation factor 
as a function of pressure. We will discuss two extreme cases. 

Case 1: (PI8 - Pz8 - n)Pf << RT and (PI' - P2')YJ << RT 

In  this case, one can expand the exponential terms in eqs. (39) and (42). 
Therefore, the permeation equations become 

P, 
1 

* (Pl' - Pz8 - n)Pi 
RT Jtotal = - Ct, (43) 

Combining eqs. (29), (43), and (44), one may rewrite eqs. (43) and (44) as 
follows: 

(45) 
(Pl* - P2a - n)vi 

RT Jtotal (reverse osmosis) = Jtot.l (pervaporation) 

vJ(Pl8 - pZs) 
RT SFJi  (reverse osmosis) = 1 - 

(46) 
(Pl* - PZS - n)P; 

RT 
+ SFj' (pervaporation) X 

where the permeation flux and separation factor for pervaporation are ob- 
tained when the downstream pressure is close to  zero. 

Let us consider a system of water with a small amount of organic com- 
pound, and it is desired to  purify the water using reverse osmosis. In  this 
case, we may estimate the permeation results for reverse osmosis. Thus 
assume 

Ctla = 0.995 CJ: = 0.005 (where i = HzO, J = organic compounds) 

vi = 18 cm3/mole vJ = 25 cm3/mole 

PI' = 200 psia PZa = 15 psia T = 300°K 

RT Cit RT 1.0 RT < - ln- = 0.005- n = - l n -  vi Vi 0.995 - P; 0.995 

RT = 2.5 X 10" erg 

(PI* - PZ' - n)v1 = 2.5X108 erg (PIs - PZa)vJ = 3.5X108 erg 

Jtotsl (reverse osmosis) = .Itots, (pervaporation) 

(A). SFJi (reverse osmosis) = 1 + SF,' (pervaporation) 
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From the above rough calculations, the permeation rate for reverse 
osmosis with 200 psia is shown to be 1% of that for pervaporation, and the 
separation factor decreases very much. For example, a membrane with 
separation factor for pervaporation SFj' of 100 gives a separation factor for 
reverse osmosis of only around 2.0. 

Case 2: (PI' - Pz' = n)T, >> RT and (PI' - Pz*)YJ >> RT 

This is the case when the upstream pressure becomes infinite. From 
eqs. (39) and (42)) the permeation rate and separation factor can be easily 
shown to be 

Therefore, the permeation equations for the reverse osmosis with infini- 
tive pressure approach those for pervaporation. 

The permeation rate and separation factor for reverse osmosis other than 
the two extreme cases above will depend on the pressure and increase as an 
exponential function as shown in eqs. (39) and (41). 

SUMMARY 

We have used the assumption of constant membrane pressure in deriving 
all the permeations of nonmediated transport processes. The permeation 
equation for different types of processes was correlated. It is possible to  
generate the permeation properties of reverse osmosis from those of per- 
vaporation under certain important conditions. The use of reverse osmosis 
to  purify water with small quantities of organic compounds is calculated to 
be of limited use with the pressure under 2000 psia. There are some experi- 
mental facts to  substantiate the above conclusions. It was found9 that the 
permeation rate and separation factor for the water with some organic 
compounds for reverse osmosis is decreased greatly by comparing with 
those of pervaporation as expected from the above permeation equations. 

Physically, the difference between the process of pervaporation and 
reverse osmosis is different types of driving force. The maximum driving 
force a t  the upstream membrane boundary for pressure induced transport 
is that of pervaporation which is equal to  RT/l ,  where 1 is thickness. As 
the driving force was defined as the gradient of chemical potential, the 
above relation can be easily shown from eq. (2) when using the assumption 
of linear concentration gradient profile (Appendix 11). 

The effects of pressure on the structure of membrane may not be ne- 
glected. Therefore, the permeation correlation pervaporation and reverse 
osmosis may be modified a little. However, the above conclusions are 
still valid. 
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Appendix I 
The chemical potential a t  the boundary of membrane, pil- bit*), are given by 

pi,' = pio + RT In a;,'(%) + Jp;-; Pi?dP 

pill  = pie + RT In airrn(z) + spy,m Pi d p  

pi: = pi, + 9 T  In ai:(z) + J,::: vita d p  

pi*"' = pio + RT In aitm(z) + J,: Pi d p  

where r;/ and Pi: are the partial molar volume of component i in the upstream and 
downstream phase solution, respectively; and Pi is the partial molar volume of com- 
ponent i in the membrane and is assumed to be constant. 

If P,.f is equal to P**, the following correlation equations can be obtained from eq. (9): 

(A5 1 
(A6 1 

a;,- = air* exp[- P i ( P p  - P2')/RT] 

ail- = ail* exp{ [Y - Pi(Pp - P l * ) J / R T )  

where 

( Pil* - Pi) d p .  
y =  J,, (A7 1 

Thus, eqs. (10) and (11) are valid if the partial molar volume of penetrant i in the 
membrane is equal to that in the upstream phase solution. This assumption is in general 
true when the upstream is liquid for pervaporation, liquid/liquid dialysis, reverse 
osmosis, but not for gas/gas permeation. 

Appendix I1 
If the driving force is defined as the gradient of chemical potential, the driving force 

F i ( z )  for the penetrant i a t  the position X in the membrane is given by 

-RT Ci(k) - Ci(k) Fi(X) = - 
1 Ci(X) 

The above equation is obtained by assuming the linear concentration gradient of the 
penetrant in the membrane. Thus, the driving force a t  the upstream membrane 
bozC&~ (X = ZI) is 

The absolute maximum driving force a t  the upstream membrane boundary will be 
equal to RT/l  when the concentration of penetrant i a t  the downstream membrane 
boundary, C&), is equal to zero, which is the case of pervaporation at zero downstream 
pressure. 

In the case of pressure induced transport, the driving force for the penetrant a t  the 
upstream membrane boundary is given by 
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since 

Ci(i(b) = Ci(l1) exp[-(Pl* - Pz*)Pi/RT]. 

Therefore, the driving force at the upstream membrane boundary for the pressure- 
induced transport is much smaller than that for the pervaporation at zero downstream 
pressure. 

The central point in these discussions is that the concentration for the penetrant a t  
the membrane boundary can be obtained from equilibrium principles. Therefore, the 
driving force a t  the membrane upstream boundary can reflect the permeation properties. 

The author's special thanks are due to Eli Perry, Corporate b e a r c h  Department, 
Monsanto Company, St. Louis, Missouri, for his thorough review, criticism, and the 
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amounts of organic compounds. Professor J. J. Hermans a t  the University of North 
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